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The collapse velocity of a cavitation bubble between two solid walls is numeri- 
cally found on the basis of a nonspherical model for the collapse. 

The collapse velocity of a bubble between two solid walls was first calculated in [i], 
but the spherical model for the collapsing cavitation bubble adopted there is not valid if 
the maximum initial dimensions of the bubble are comparable to the distance from the center 
of the bubble to the walls [2]. In other words, this model cannot be used in the case of 
acoustic cavitation, which is the most common type of cavitation in practical applications 
[3] .  

In the present paper we adopt the model of a nonspherical collapse of the cavitation 
bubble, developed in [2], to determine the collapse velocity. 

We assume that the cavitation bubble is initially a sphere and is at the center of the 
spherical coordinate system {r, 8} in an ideal incompressible liquid which is bounded by two 
parallel solid walls. The bubble is separated from the two walls by equal distances (Fig. i). 
We also assume that the liquid is initially at rest; we ignore gravitation and surface ten- 
sion; and we assume that the changes in the volume of the vapor--gas mixture in the bubble 
are adiabatic with y = 4/3. The cavitation bubble collapses under the influence of a static 
pressure. 

Under these assumptions, working from the solution of the Laplace equation for the 
velocity potential for the liquid flow, taking into account the boundary conditions at the 
solid walls, at the bubble, and at infinity, and taking into account the initial conditions 
on the radius of the bubble and its collapse velocity, we find that the bubble radius at a 
given time is expressed by 
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where the functions xo(t) and Xn,am(t) with n = I, 2, 3, 4 and m = 0, 1 are found from a 
stationary system of seven second-order ordinary differential equations [2]: 

To find the collapse velocity of a cavitation bubble between two solid walls, we dif- 
ferentiate Eq. (i) with respect to the dimensionless time r = t(p~/p):/2Rmax : 
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To calculate the derivatives xo and Xn,am, we reduce the original system of second- 

order ordinary differential equations [2] to a system of 14 first-order ordinary differential 
equations. 

The resulting system of equations with the initial conditions xo = l) Xn,2 m = xo = x n am = 
0 at T = 0 has been integrated numerically on a Minsk-32 computer by the fifth-order Runge ~ 
Kutta--Fel'berg method for gas contents ~ = 0 and 0.01. The integration step was monitored 
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Fig. I. Initial cavitation bub- 
ble, at t = 0. i) Bubble; 2) 
solid walls. 
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Fig. 2. Change in the dimensionless collapse veloc- 
ity of a cavitation bubble between two solid walls 
for 6 = O.01: a) I = 1/10; b) 1/6; c) 1/3. i) 8 = 
•176 2, 4) 0~ 3) 180 ~ . 
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during the calculation. Then the known values of xo and Xn,~ m were used in Eq. (2) to deter- 
mine the collapse velocity of the cavitation bubble as a function of the time Y for the 
values I = 1/3, i/6, and I/i0; the angle 8 was used as a parameter. 

The zero value of 6 corresponds to the case in which there is a vacuum in the cavitation 
bubble, i.e., Pvg = 0. In real cavitation bubbles, on the other hand, there is always some 
amount of gas (air) and vapor of the liquid. Accordingly, 6 is not zero~ and for a constant 
liquid temperature it varies over the range pv/p~--_~_~ ~i [4]. The choice of the value ~ = 
0.01, which corresponds to a bubble which contains mostly vapor, yields more realistic results 
on the collapse and permits a comparison with the case of the collapse of a bubble near a 
single solid wall [5]. The procedure outlined above can also be used for numerical calcula- 
tions at other possible values of ~. 

Figure 2 and Table 1 show the numerical results on the collapse velocity of a cavita- 
tion bubble between two solid walls. The dashed curves in Fig. 2b show the corresponding 
results from [5] for the case of a single solid wall. 

It follows from Fig. 2 that the collapse velocity falls off with increasing I (this 
decrease is attributed to a degradation of the conditions for the flow of the liquid toward 
the bubble), and it increases as time elapses. 

The collapse ve!oci~y is at a maximum at ~ = • corresponding to the formation of an 
annular jet. The same conclusion was reached in [2] from a study of the behavior of the shape 
of the bubble. 

It follows from Table 1 that a bubble filled with a vapor--gas mixture collapses more 
slowly than an empty bubble. The evident reason for this difference is the counterpressure 
exerted by the vapor--gas mixture as it is compressed. It is not difficult to see that the 
collapse velocities of empty and filled bubbles differ only slightly, implying that the gas- 
content parameter 6 has only a slight effect on the collapse velocity (for values of this 
parameter between 0 and 0.01). 

Comparison with the results for the. case of a single solid wall (Fig. 2b) shows that the 
second wall reduces the collapse velocity; this conclusion agrees with the results [1], found 
from a spherical model for the bubble in the case R << b. 
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TABLE i. Values of v/(p~/p) ~/a 

1/a [ 1/6 i/1o 
o 

0 o •  ~ [ O~ 4-90  o 0 ~ : k 9 0  o 

0 I 0, I13 
0,01 0,111 

0 O, 242 

0,01 0,239 

For T = 0,2 

0,151 I 0,148 0,157 

0,150 I 0,146 0,156 

For ~=0 ,4  

0 , 3 2 7 1 0 , 3 2 0 [ 0 , 3 3 8  

0,323 0,316 0,334 

O, 169 

O, 168 

O, 367 

O, 363 

O, 172 

O, 170 

O, 372 

0,368 

It can also be concluded from the study of the collapse of a bubble between two solid 
walls in [i, 2] and in the present work that the experimentally observed decrease in the 
erosion caused by acoustic cavitation with decreasing value of b at R ~ b [3] is a conse- 
quence of a decrease in the collapse velocity of cavitation bubbles and of the formation of 
an annular jet rather than a "cumulative" (linear) jet. This circumstance must be taken 
into account in choosing optimum technological conditions for ultrasonic processes involving 
liquids. 

NOTATION 

r, 8, spherical coordinates; y, ratio of specific heats of the gas; R, instantaneous 
radius of the cavitation bubble; t, time; Rmax , value of R at t = 0; ~ = Rmax/(2b); b dis- 
tance from the origin to the walls; Pam, Legendre polynomial of index 2m; z = t(p~/0)~/a/ 
Rmax, dimensionless time; p~, pressure in the liquid at an infinite distance from the bubble; 
0, density of the liquid; v, collapse velocity of the cavitation bubble; ~ = Pvg/P~, gas- 
content parameter; Pvg Pv + Pg, pressure of the vapor--gas mixture in the bubble at t = 0; 
Pv, partial pressure of the liquid vapor in the bubble; pg, partial pressure of the gas (air) 
in the bubble. 
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